91桃色

ISSN: 2155-952X

Journal of Biotechnology & Biomaterials
Open 91桃色

Our Group organises 3000+ Global Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open 91桃色 Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open 91桃色 Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Are solitary waves in microtubules signals for motor proteins?

*Corresponding Author:

Copyright: © 2020  . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 
To read the full article Peer-reviewed Article PDF image

Abstract

Microtubules (MTs) are the major part of cytoskeleton. They are long polymeric structures existing in eukaryotic cells. MTs are hollow cylinders that spread between a nucleus and cell membrane. They are involved in nucleic and cell divisions and organization of intracellular structure. The most important for this work is the fact that MTs also serve as a network for motor proteins. There are two distinct families of MT associated motor proteins that move along MTs carrying molecular and vesicular cargos. These cellular motors with dimensions of less than 100 nm convert chemical energy into useful work. Contrary to ordinary MTs, those existing in neuronal cells are uniquely stable and consequently, neurons once formed don’t divide. This stability is crucial as there are evidences that neuronal MTs are responsible for processing, storage and transduction of biological information in a brain. Like all biological systems, MTs are nonlinear in their nature. Investigation of nonlinear dynamics of MTs has yielded to solitary waves moving along MTs. A recently established general model of MTs is explained. It is shown that there are three types of these solitary waves. They are: kink solitons, bell-type solitons and localized modulated waves called breathers. Two mathematical procedures for solving a crucial nonlinear differential equation are explained. They are based on semi-discrete and continuum approximations. It is interesting that the kind of the obtained soliton depends not only on the physical system but also on the used mathematical method as well. It is argued that these waves could be signals for the motor proteins to start and/or to stop moving along MT.

Keywords

Citations : 3330

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • 91桃色 to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page
International Conferences 2025-26
 
Meet Inspiring Speakers and Experts at our 3000+ Global

Conferences by Country

Medical & Clinical Conferences

Conferences By Subject

Top